Dilute Stream Solid-Liquid Separations Using Continuous Vacuum Filtration Technologies

Barry A. Perlmutter, President & Managing Director BHS-Filtration Inc. 9123-115 Monroe Road Charlotte, North Carolina 28270

Presentation Overview

- BHS Background
- Vacuum Filtration
- Algae Lab & Pilot Tests
- Scale-Up & Production Design
- Pressure Filtration for Non-Algae Biomass
- Conclusions

BHS History-Worldwide

- Founded as a iron mining company
- **Production of construction machines**
- **Production of gear units**
- **Production of filtration machinery**

BHS History-Worldwide

- BHS-Filtration Inc., Charlotte, NC
- BHS-Tianjin, China
- Implementation of SAP Worldwide
- Record Sales for BHS Worldwide
- **BHS-India**, (Hyderabad)
- Expansions and Technology Upgrades

BHS-Filtration Inc.

Thin-Cake Solid-Liquid Separation, Cake Washing & Drying Technologies

- Filtration & Process Laboratories
- Pilot Rental Filters for On-site Testing
- Process & Project Engineering
- PLC Control Systems & Turnkey Skids
- Start-Up & Mechanical Parts & Services

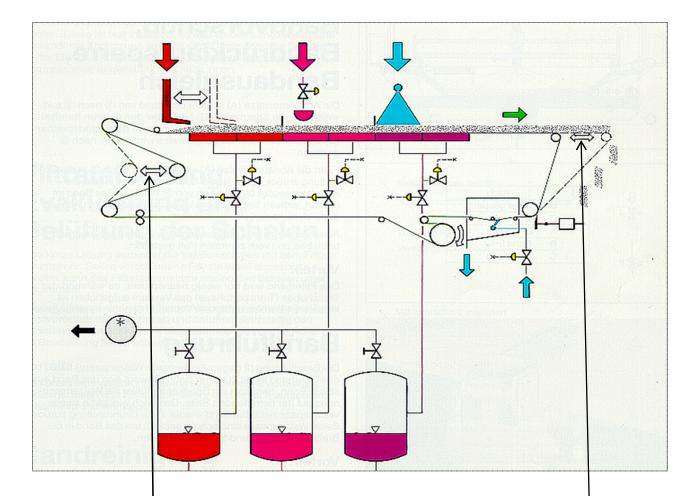
BHS Technologies Thin-Cake Solid-Liquid Separation, Cake Washing & Drying Technologies

- Pressure & Vacuum Filtration
- Batch & Continuous Operation
- High Solids to Clarification
- Maximum Cake Washing Efficiency
- Cake Pre-Drying
- Automatic Cake Discharge for Wet, Dry or Slurry

BHS-Technologies *Thin-Cake Solid-Liquid Separation, Cake Washing & Drying Technologies*

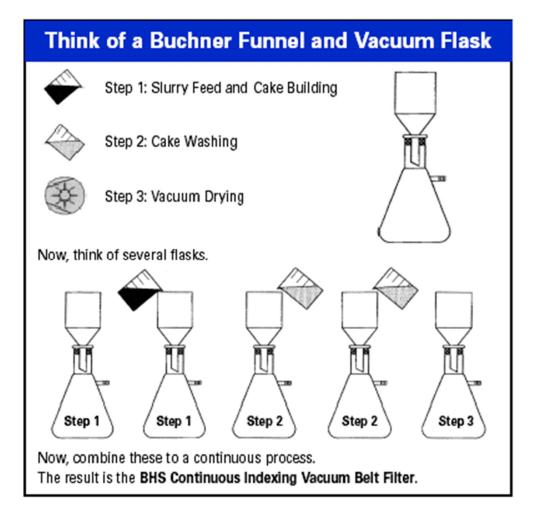
Candle Filter:ClarificationPressure Plate Filter:ClarificationVacuum Belt Filter:High Solids, ContinuousRotary Pressure Filter:High Solids, ContinuousAutopress Filter:Full Containment, Pharma

SOLID-LIQUID SEPARATION CONTINUOUS VACUUM SYSTEMS



Vacuum Filtration

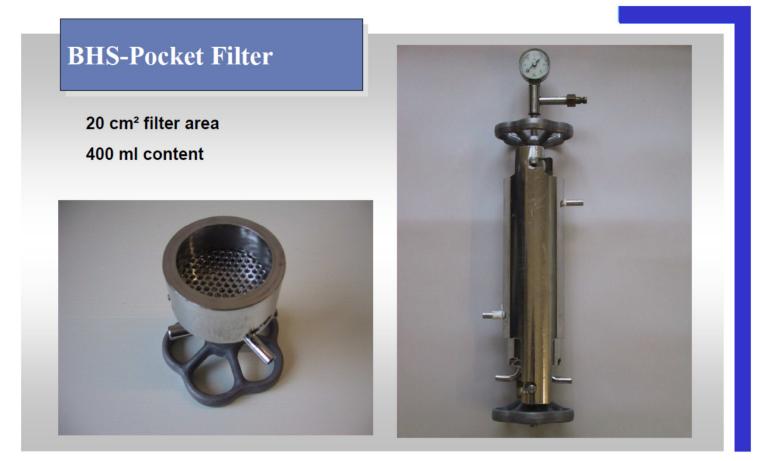
- Vacuum is mechanically simple
- Vacuum filters are continuous
- Cake thickness can be controlled
- Wide range of materials of construction
- Given that the cake thickness is controllable, residual cake moistures can be consistent


BHS Vacuum Belt Filter

Belt movement by pneumatic cylinders only

Schematic Presentation

BHS Continuous-Indexing Vacuum Belt Filter BF 35/21.5 with 73 m² of Area



Typical Laboratory Testing to Determine the Optimum Vacuum Filtration Technology

BHS Laboratory Tests

BHS Laboratory Tests Data Using BHS Pocket Filter

		UNITS	Run # 17
	Filter Media :		PP 2930
	Suspension:		
	Initial Volume	ml	8000
Filling	Volume of Slurry	ml	
	Density of Slurry		
	% Solids in Feed		
Filtration	Vacuum	in hg	18.0
	Gas Flow Rate		
	Temperature		
	Volume of Filtrate	ml	25.0
	Time for Filtration	min	1:00
	% Solids in Filtrate		
Drying	Vacuum		
	Gas Flow Rate		
	Temperature		
	Volume of Filtrate		
	Time for Drying	min	2:00
	% Solids in Filtrate		
	Pressing Pressure	psig	
	Pressing Time	min.	
Cake	Weight	g	9.5
	Thickness	mm	5
	% Solids		23.6
	Discharge OK?		Yes
	Cake rests on filter cloth?		No

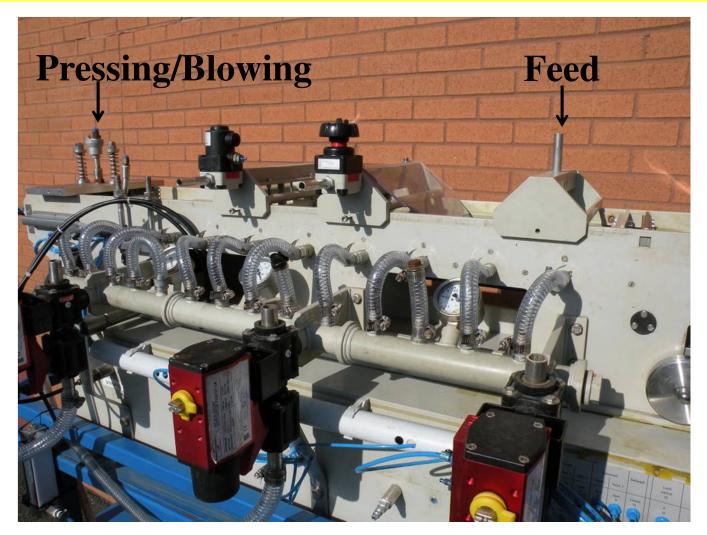
BHS Laboratory Tests Data-Run #17

Sample Volume (raw slurry equivalent)	8000 ml
Test Filter Area	20 cm^2
Filtration Time	60 seconds
Cake Thickness	5 mm
Cake weight	9.5 grams
Cake Solids %	23.6

Filter Flux Rate = Sample Volume / (Test Filter Area * Filtration Time)

Filter Flux Rate (Raw Slurry Basis)

- = (Feed Volume) /(Filter Area x $\sqrt{Filtration Time}$)
- = 8.0 liters/ $(20 \text{ cm}^2 * \sqrt{60 \text{ sec}}) * 10000 \text{ cm}^2 / 1 \text{ m}^2$
- = 516 liters / (m² * $\sqrt{\text{sec}}$)

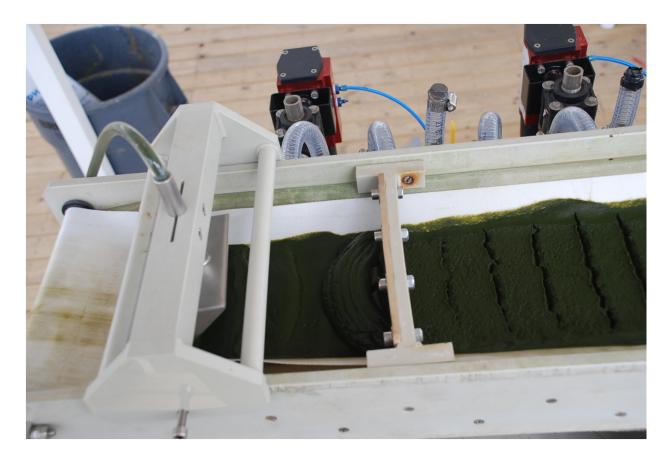


BHS Pilot Tests with Vacuum Belt Filter Model LBF (0.1 m²)

BHS Pilot Tests with Vacuum Belt Filter Model LBF (0.1 m²)

BHS Pilot Tests with Vacuum Belt Filter Model LBF (0.1 m²)

Filtration Area (FA) = 2 zones x $.01 \text{ m}^2 = .02 \text{ m}^2$


Correction Factor (CF) = $\sqrt{60 \text{ sec}/(60 + 2 * 4 \text{ sec})} = 0.114 \sqrt{\text{sec/sec}}$

Expected Pilot Filter, LBF, Performance with Polymers and Sedimentation

- $= FA \times FFR \times CF$
- = 0.02 m² x 516 liters / (m² * \sqrt{sec}) x 0.114 $\sqrt{sec/sec}$
- = 1.18 liters/sec or 70.6 l/min on a raw algae feed basis or 186 gpm/m² flux rate



BHS Pilot Tests with Vacuum Belt Filter Model LBF (0.1 m²) Feeding Box



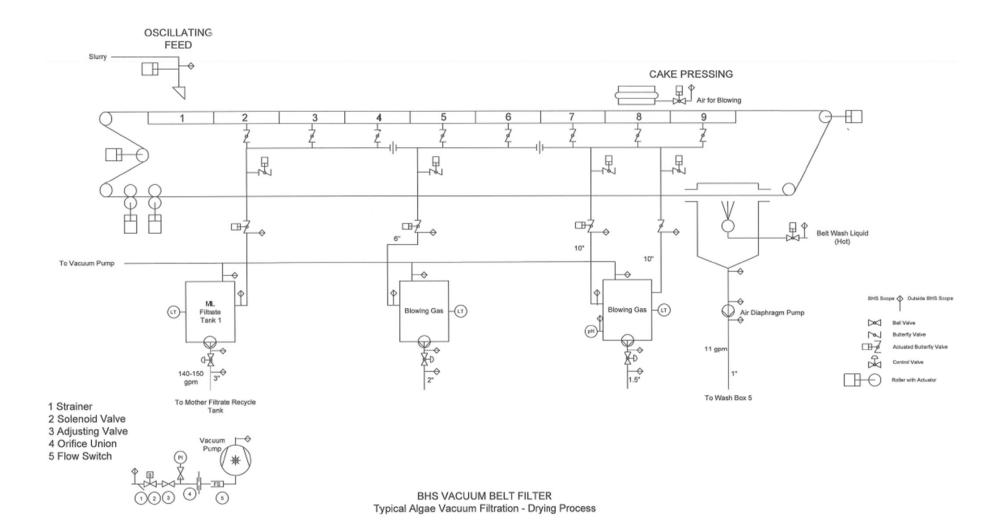
BHS Pilot Tests with LBF (0.1 m²): Drying with Pressing, Blowing and Vacuum

BHS Pilot Tests with LBF (0.1 m²) Cake Discharge

BHS Scale-Up for Continuous Vacuum Filtration

BHS Scale-Up for Continuous Vacuum Filtration

- The Raw Slurry Feed is 30 gpm with 6% solids
- Based upon the pilot test flux rate, which was much lower than the laboratory tests due to elimination of chemical and mechanical pretreatment, the ratios of filtration areas and drying areas are calculated.



BHS Scale-Up for Continuous Vacuum Filtration

- The result is a BHS vacuum belt filter with a total area of 24 m² and eight (8) zones.
- Zone arrangement
 - Feed: Oscillating feed device / no vacuum
 - Filtration: 3 Zones
 - Drying: 3 Zones
 - Pressing/Blowing/Vacuum: 1 Zone
 - Spare Vacuum Before Discharge: 1 Zone

Vacuum Filtration P & ID

SOLID / LIQUID SEPARATION CONTINUOUS VACUUM SYSTEMS: OTHER APPLICATIONS

Vacuum Filtration for Lignin, Cellulose and Biomass with Eleven (11) Wash Stages and 24 m² of Filter Area

SOLID / LIQUID SEPARATION CONTINUOUS PRESSURE SYSTEMS: OTHER APPLICATIONS

Production Objectives for Biomass/Cellulose Wood Chips

• Production capacity:

20 tons of dry solids / 24 hours

- Slurry composition:
 - 2 12 % solids per weight
- Washing: Three step, counter current
- Washing media: DI water
- Residual moisture: 50% Solids

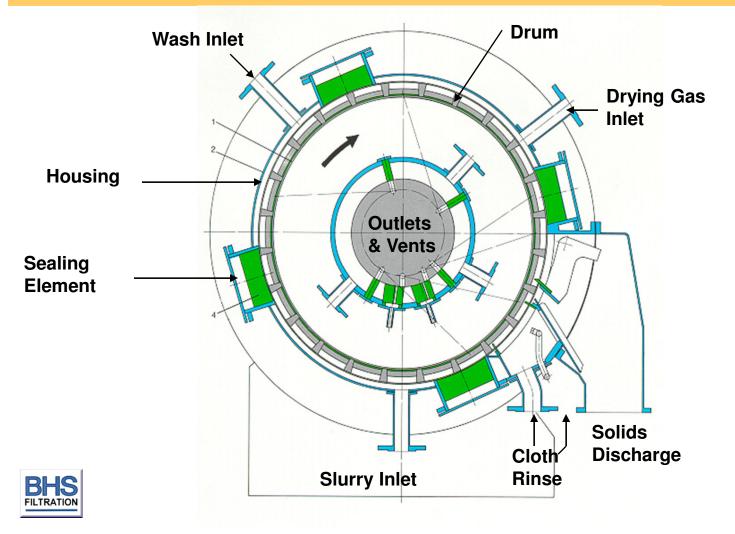
Pressure Filtration

Specific total filter performance flux rate:

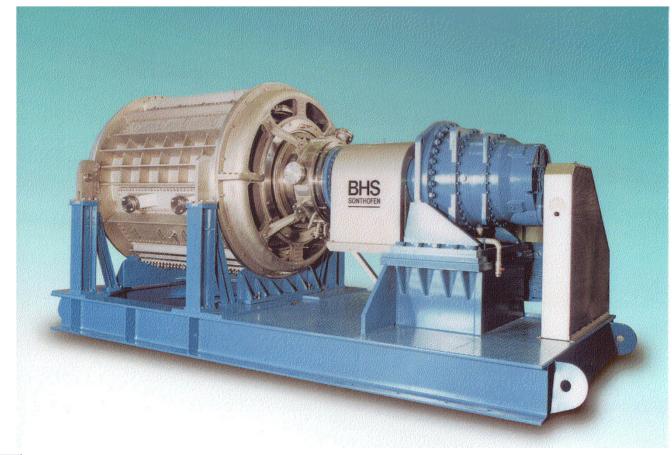
$$Q = 90\frac{1}{h} \cdot \frac{6g}{20cm^2} = 270\frac{kg}{m^2h}$$

Required filter area:

$$A = \frac{835 \frac{kg}{h}}{267 \frac{kg}{m^2 h}} = 3.1 m^2$$


Pressure Filtration

The result is a BHS rotary pressure filter with filter area of 3.2 m²


Process Step	Degrees of Rotation
Filtration	57
Washing 1	57
Washing 2	57
Washing 3	57
Blow Drying	57
Cake Discharge and	75
Cloth Cleaning	

BHS Rotary Pressure Filter Typical Operation

BHS Rotary Pressure Filter Model B-16 Center Drive

Summary

- Algae filtration and drying is very unpredictable from 1.25 gpm/m² to 186 gpm/m²
- In another algae process testing, the flux rate was 21 gpm/m²
- Differences in feedstock parameters, chemical additions, and mechanical pretreatment can result in different process solutions.
- Thin-Cake vacuum operations have provided acceptable process results in combination with sedimentation and chemical treatment.

Summary

- Ultimately, there is no substitute for accurate and professional test work under realistic conditions.
- Laboratory and pilot testing is required.
- Close cooperation between the client and filtration vendor is necessary as small process changes can have significant impacts to the filtration and drying results.

